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Abstract

With the increasing computational power of computers, software design systems are pro-
gressing from being tools for architects and designers to express their ideas to tools capable
of creating designs under human guidance. One of the main limitations for these computer-
automated design programs is the representation with which they encode designs. If the
representation cannot encode a certain design, then the design program cannot produce it.
Similarly, a poor representation makes some types of designs extremely unlikely to be cre-
ated. Here we define generative representations as those representations which can create
and reuse organizational units within a design and argue that reuse is necessary for design
systems to scale to more complex and interesting designs. To support our argument we
describe GENRE, an evolutionary design program that uses both a generative and a non-
generative representation, and compare the results of evolving designs with both types of
representations.

1 Introduction

As computers become more powerful, software design tools are becoming increas-
ingly more powerful tools for architects and designers to express their ideas. In
addition, the use of artificial intelligence techniques has enabled these software
packages to assist in the design process themselves. Already computer automated
design systems have been used for the design of antennas, flywheels, load cells,
trusses, robots and other structures (Bentley, 1999; Bentley & Corne, 2001). While
these programs have been successful at producing simple, albeit novel artifacts, a
concern with these systems is how well their search ability will scale to the larger
design spaces associated with more complex artifacts. In engineering and software
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development, complex artifacts are achieved by exploiting the principles of regular-
ity, modularity, hierarchy and reuse, which can be summarized as the hierarchical
reuse of organizational units.

Breaking down a computer-automated design program into its separate modules
yields the representation for encoding designs, the algorithm for exploring the space
of designs that can be represented, and the fitness function for scoring the goodness
of a particular design. Ideally, the ability of the design program to create multiple
layers of organizational units should be independent of how designs are scored. In
addition, the algorithm for exploring the space of designs can only find designs
that can be expressed by the chosen representation. For example, in optimizing the
dimensions on a design, the design program can only produce designs that fall in
the pre-specified parameter space and no modification of the search algorithm can
affect the degree of reuse in the resulting designs. Thus for computer-automated
design software to achieve designs with multiple layers of reusable organizational
units these software systems must use a representation capable of encoding such
designs.

Representations for computer-automated design can be divided into several classes.
At the top level representations can be split into parameterizations and open-ended
representations. Parameterizations are the class of representations in which the
topology of the design is pre-specified and the search algorithm is performing nu-
merical optimization on a set of parameters, such as the dimensions on a design.
In contrast, with open-ended representations the space of design topologies can be
explored thereby allowing new types of designs to be discovered. Since we are in-
terested in the ability of a design program to create truly novel designs, we focus
on open-ended representations. An important distinction between classes of open-
ended representations is whether or not they are generative. With a generative rep-
resentation elements of an encoded design can be used multiple times in mapping
from the encoded design to the actual design and with a non-generative represen-
tation each element in an encoded design is used at most once. For example, with
a generative representation the design of a table could encode the specification of a
table leg once and then for each occurrence of a table leg there would be a pointer
to look at this specification. Using a non-generative representation there would be
copies of the specification of the table leg at each place where it is used.

Being able to reuse parts of a design improves the ability of generative represen-
tations to scale in complexity and number of parts. In the first case, designs often
have dependencies such that changing one component in a design requires the si-
multaneous change in another component. For example, in creating a design for a
dining-room table the length of each table leg is dependent on the lengths of all
the other legs in the table and it is only useful to change the lengths of all legs
together. By having a single description of a table leg, with references to this de-
scription at each place where it is used, all table legs are changed by changing
this one description. With a non-generative representation the search program must
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find and change all occurrences of a leg together, but this is feasible only when
the dependencies are known beforehand and not when they are created during the
search process. In the second case, as the number parts in a design increases there
is an exponential increase in the size of the design space. Since search consists of
iteratively making changes to designs that have already been discovered, this in-
crease in the design space reduces the relative effect of changing a single part in a
design and increases the number of changes needed to navigate the design space.
Increasing the amount of change made before re-evaluating a design is not a viable
solution because this increase produces a corresponding decrease in the probability
that the resulting design will be an improvement. With a generative representation
the ability to reuse previously discovered assemblies of parts by either adding or re-
moving copies enables large, meaningful movements about the design space. Here
the ability to hierarchically create and reuse organizational units acts as a scaling
of knowledge through the scaling of the unit of variation.

2 A Generative Representation

Generative representations are defined as any type of representation that allows for
the creation and reuse of organizational units in a design. Within this definition
there are many different methods by which reuse can be achieved. The genera-
tive representation used here is a kind of computer language within which design-
constructing programs are written. This language consists of a framework for de-
sign construction rules and a set of these rules defines a program for a design.
Designs are created by compiling a design program into an assembly procedure of
construction commands and then executing this assembly procedure in the module
which constructs designs. Since it is a general framework for encoding designs the
person using this framework must supply the set of design-construction commands
and a design constructor.

The rules for constructing a design consist of a rule head followed by a number of
condition-body pairs. For example in the following rule,
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and a sequence of rules. For example the a design could be encoded as,
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Through an iterative sequence of replacing rule heads with the appropriate body
this program compiles as follows,

1. P0(4)

2. [ P1(6) ] a(1) b(3) c(1) P0(3)

3. [
A

[ b(6) ] d(1)
E
(4) ] a(1) b(3) c(1) [ P1(4.5) ] a(1) b(3) c(1) P0(2)

4. [
A

[ b(6) ] d(1)
E
(4) ] a(1) b(3) c(1) [

A
[ b(4.5) ] d(1)

E
(4) ] a(1) b(3)

c(1) [ P1(3) ] a(1) b(3) c(1) P0(1)

5. [
A

[ b(6) ] d(1)
E
(4) ] a(1) b(3) c(1) [

A
[ b(4.5) ] d(1)

E
(4) ] a(1) b(3)

c(1) [
A

[ b(3) ] d(1)
E
(4) ] a(1) b(3) c(1)

6. [ [ b(6) ] d(1) [ b(6) ] d(1) [ b(6) ] d(1) [ b(6) ] d(1) ] a(1) b(3) c(1) [
[ b(4.5) ] d(1) [ b(4.5) ] d(1) [ b(4.5) ] d(1) [ b(4.5) ] d(1) ] a(1) b(3)
c(1) [ [ b(3) ] d(1) [ b(3) ] d(1) [ b(3) ] d(1) [ b(3) ] d(1) ] a(1) b(3)
c(1) b(3)

A graphical version of the generative representation described here is shown in
figure 1.a, and the sequence of assembly procedures generated by it are shown in
figure 1.b. In these images rule-head symbols are represented by cubes with lines
connecting them to their condition-body pairs, grey spheres represent the condition
and the symbols following it are the body. The sequence is started with the first
cube (here a blue and yellow one) and the sequence of symbols below it are the
assembly procedures generated after each iteration of parallel replacement.

To create designs with this type of generative representation, the non-rule-head
symbols are interpreted as construction commands in a design construction lan-
guage. For example, three-dimensional objects can be constructed by creating a
language for adding cubes in a three-dimensional grid:

H back ���$� , move in the negative X direction
�

units.H clockwise ���$� , rotate heading
�JI K'��L

about the X axis.H counter-clockwise ���M� , rotate heading
�JIN%4K'�.L

about the X axis.H down ���$� , rotate heading
�JIN%4K'��L

about the Z axis.H forward ���$� , move in the positive X direction
�

units.H left ���$� , rotate heading
�JI K'��L

about the Y axis.
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(a)

(b)

Fig. 1. Graphical version of the generative representation, (a); along with the sequence of
strings produced, (b).

5



(a) (b)

Fig. 2. Two tree structures produced from the same set of rules with different starting com-
mands.

H right ���$� , rotate heading
�JIN%4K'��L

about the Y axis.H up ���$� , rotate heading
�OIPK'��L

about the Z axis.H ], pop the top state off the stack and makes it the current state.H [, push the current state to the stack.

With this design-construction language a design starts with a single cube in a
three-dimensional grid and new cubes are added with the commands forward()
and back(). The current state, consisting of location and orientation, is main-
tained and the commands clockwise(),counter-clockwise(),down(),
left(), right(), and up() change the orientation. A branching in design con-
struction is achieved through the use of the commands [ and ], which push (save)
and pop (restore) the current state onto a stack.

Using the key: a = up, b = forward, c = down, and d = left; the above example
becomes,

+ �,��-.�
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.�����435
6"#�'�$7GQ.RS�?
��BT�U�V>WX8.V>CD�Y=��

C.U�WX�Z�:
�� + �,���$�5%[

�

+ 
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and compiles into the sequence:

6



[ [ forward(6) ] left(1) [ forward(6) ] left(1) [ forward(6) ] left(1) [
forward(6) ] left(1) ] up(1) forward(3) down(1) [ [ forward(4.5) ] left(1)
[ forward(4.5) ] left(1) [ forward(4.5) ] left(1) [ forward(4.5) ] left(1) ]
up(1) forward(3) down(1) [ [ forward(3) ] left(1) [ forward(3) ] left(1)
[ forward(3) ] left(1) [ forward(3) ] left(1) ] up(1) forward(3) down(1)
forward(3)

Executing this assembly procedure produces the structure shown in figure 2.a. In-
terestingly, the rules of this design program encode for a family of designs and by
using a different starting command different designs can be created. The design in
figure 2.b is created by using the starting command

+ �,�Y`��
instead of

+ �,��-.�
.

3 GENRE: An Evolutionary Design System

To demonstrate the advantages of generative representations we use GENRE, an
evolutionary design system for creating designs (Hornby, 2003a). GENRE consists
of several design constructors and fitness functions, the compiler for the generative
representation and an evolutionary algorithm (EA) for searching the design spaces.
EAs are an optimization technique inspired by natural evolution (Mitchell, 1996;
Michalewicz, 2000) that has been used both in engineering design and also in the
creation of different types of art. The EA is the module that drives GENRE and it
operates by processing a population of designs (members of which are called indi-
viduals) encoded with the generative representation. Search is started by creating
an initial random population of individuals and evaluating each of these with a user
defined fitness function, a mathematical expression for scoring the goodness of a
design. The EA then creates successive new populations by selecting the better in-
dividuals of the current population and applying small amounts of variation to their
encoding to produce new individuals in a new population.

The two variation operators that are used to produce new individuals are mutation
and recombination. Mutation creates a new individual by copying the parent indi-
vidual and making a small change to it, such as by replacing one command with an-
other, perturbing the parameter in a command by adding/subtracting a small value
to it, or adding/deleting a sequence of commands in a rule body. Recombination
takes two individuals as parents and creates a new individual by making a copy of
the first parent and then either exchanging a rule with the second parent, or ran-
domly replacing a sequence of commands in one body with a sequence from the
second parent.

Designs can be encoded with either the generative representation described in sec-
tion 2 or a non-generative representation. For designs encoded with the generative
representation the design program is first compiled into a sequence of construction
commands called an assembly procedure. This assembly procedure is then executed
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by the design constructor to produce the encoded design. For the non-generative
representation each individual in the population is an assembly procedure which
specifies how to construct the design. We implement this assembly procedure as
a degenerate version of the generative representation which has only a single rule
in which the condition always succeeds and the body consists only of construction
commands. Implementing the non-generative representation in the same way as the
generative representation allows us to use the same evolutionary algorithm and the
same variation operators with the only difference between the two representations
is the ability to hierarchically reuse elements of encoded designs. Once a design
has been constructed, using either the generative or non-generative representation,
it is evaluated for how good it is with the user-defined fitness function.

4 Evolution of Tables

The first design problem we apply GENRE to is the evolution of tables. The fitness
of a table is a product of its height, surface structure, and stability, divided by the
number of excess cubes used. The height of a table is the height of the highest cube
in the design and the value of a table’s surface structure is the number of cubes
at this height. Stability is a function of the volume of the table and is calculated
by summing the area at each layer of the table. Since maximizing height, surface
structure and stability typically result in table designs that are solid volumes, a
measure of excess cubes is used to reward designs that use fewer bricks and its
value is the number of cubes not on the surface.
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Fig. 3. Fitness comparison between the non-generative and generative representations on
evolving tables.

To compare the generative and non-generative representations we ran fifty trials
with each representation in a grid of 40

I
40
I

40 cubes. For each trial the evolution-
ary algorithm was configured to run for two thousand generations with a population
of two hundred individuals. The graph in figure 3 contains the results of these ex-
periments. Evolution with the generative representation increased in fitness faster
than with the non-generative representation and had a higher final average fitness
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Evolved tables: (a) the best table evolved using the non-generative representation;
(b) the best table evolved using the generative representation; (c)-(f) are other tables evolved
using the generative representation with variations of the original fitness function.

of approximately five hundred thousand versus a final average of just under two
hundred thousand with the non-generative representation. In addition, the greater
leveling off off the fitness curve with the non-generative representation suggests
that it does not handle increased design complexity as well as the generative repre-
sentation.

Images of tables evolved with the two representations show the different styles
achieved with them. Examples of the best table evolved with each representation,
along with additional tables evolved with the generative representation, are shown
in figure 4. The number of parts in these tables range from under a thousand to 5921
for the table in figure 4.d (created with a generative representation). In general,
tables evolved with the non-generative representation are irregular and evolution
with this representation tends to produce designs in which tables are supported
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Fig. 5. Performance comparison between the non-generative representation and the gener-
ative representation on evolving robots.

by only one leg. The likely reason for this is that it is not possible to change the
length of multiple table-legs simultaneously with the non-generative representation,
so the best designs (those with the highest fitness) had only one leg that raised
the surface to the maximum height. In contrast, tables evolved with the generative
representation have a reuse of parts and assemblies of parts and are supported with
multiple-legs.

5 Evolution of Robots

The next class of design substrates on which the non-generative and generative
representations are compared is that of designing robots in a simulated, three-
dimensional environment. Robots (called genobots for ones created with the gen-
erative representation) are constructed in a method that is similar to the that of
building tables although instead of working with cubes the commands in this de-
sign substrate specify the attachment of rods and actuated joints. In addition to con-
structing the morphology of a robot, there are additional commands which specify
the software for controlling the robot. Since the goal for this class of designs is to
produce robots that move quickly, a robot’s fitness is a function of how far it moved
its center of mass.

Ten trials were performed with each representation and figure 5 contains a plot of
the averaged best fitness for these trials. After ten generations the generative rep-
resentation achieved a higher average than runs with the non-generative represen-
tation do after 250 generations and the final genobots evolved with the generative
representation are on average more than ten times faster than robots evolved with
the non-generative representation.

Figure 6 shows the best robot evolved with each representation. From these images
it can be seen that the robot evolved with the non-generative representation is more
irregular than genobots evolved with the generative representation. In addition, in
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(a) (b)

(c) (d)

Fig. 6. Evolved robots: (a) the best robot evolved using the non-generative representation;
(b) the best robot evolved using the generative representation; and (c) and (d) are results
from additional runs using the generative representation.

some cases genobots encoded with the generative representation have two or more
levels of reused assemblies of components. Additional runs with the non-generative
representation failed to yield any designs better than the one already shown. In
contrast, additional runs with the generative representation produced a variety of
genobots with different styles of locomotion, two of which are shown in figure 6.

6 Advantages of a Generative Representation

The central claim of this paper is that using generative representations improves the
evolvability of designs by capturing design dependencies and improving the ability
of the search algorithm to navigate through large design spaces in a meaningful
way. This can be intuitively understood by looking at some examples of designs
evolved with a generative representation.
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(a) Original. (b) Three corners.

(c) Narrower. (d) More surface cubes.

Fig. 7. Mutations of a table.

Figure 7 contains examples of different tables that can be produced with a single
change to an encoded design. The original table is shown in figure 7.a and one
change to its generative encoding can produce a table with: (b), three legs instead of
four; (c), a narrower frame; or (d), more cubes on the surface. With a non-generative
representation these changes would require the simultaneous change of multiple
symbols in the encoding. Some of these changes must be done simultaneously for
the resulting design to be viable, such as changing the height of the table legs, and
so these changes are not evolvable with a non-generative representation. Others,
such as the number of cubes on the surface, are viable with a series of single-voxel
changes. Yet, in the general case this would result in a significantly slower search
speed in comparison with a single change to a table encoded with a generative
representation.

The graphs in figure 8 are scatter plots of the command difference between a parent
and child’s assembly procedures against their change in fitness on the robot de-
sign problem. These graphs show that as the size of change in the resulting design
increases it is more likely to be an improvement on designs encoded with a gener-
ative representation than those encoded with a non-generative representation. This
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Fig. 8. Plot of amount of change in assembly procedures from parent to child versus change
in fitness for trials evolving robots.

means that search algorithms are better able to use large movements in the design
space to navigate through the design space with the generative representation.

(a) Fitness: 348. (b) Fitness: 780.

(c) Fitness: 1450. (d) Fitness: 2192.

Fig. 9. Evolution of a four-legged walking genobot.

That the evolutionary design system is taking advantage of the ability to make co-
ordinated changes with a generative representation is demonstrated by individu-
als taken from different generations of the evolutionary process. The sequence of
images in figure 9, which are of the best individual in the population taken from
different generations, show two changes occurring. First, the rectangle that forms
the body of the genobot goes from two-by-two (figure 9.a), to three-by-three (fig-
ure 9.b), before settling on two-by-three (figures 9.c-d). These changes are possible
with a single change on a generative representation but cannot be done with a single
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(a) (b)

Fig. 10. Two tables from a family of designs.

change on a non-generative representation. The second change is the evolution of
the genobot’s legs. That all four legs are the same in all four images strongly sug-
gests that the same module in the encoding is being used to create them. As with the
body, changing all four legs simultaneously can be done easily with the generative
representation by changing the one module that constructs them, but would require
simultaneously making the same change to all four occurrences of the leg assembly
procedure in the non-generative representation.

One other advantage of using a generative representation is that by encoding an
object through a set of reusable rules for constructing it, it is possible to encode a
class of designs. The example encoding of section 2 can produce a family of tree-
like structures by changing the argument to the starting command. By evaluating
an individual with different parameters to its starting command families of designs
can be evolved, such as the tables in figure 10 (Hornby, 2003b).

7 Conclusion

The purpose of this work has been to argue that for computer-automated design sys-
tems to scale in complexity they must use generative representations: representa-
tions which allow for the hierarchical construction of reusable organizational units.
To support this claim we described a generative representation and GENRE, an evo-
lutionary design system for evolving different classes of designs. Using GENRE
we showed that evolution with a generative representation produces table and robot
designs with a higher fitness than with a non-generative representation. This fit-
ness advantage is a result of the generative representation capturing some design
dependencies through reuse and because the ability to manipulate the reusable or-
ganizational units of a generative representation better enables the search algorithm
to navigate through the design space.

The designs that we can achieve are limited only by our imagination and the tools
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with which we work. Similarly, the designs that computer-automated design soft-
ware can achieve are limited only by the representations with which they operate.
The generative representation described in this paper is just one way of allowing
organizational units to be reused in a design. There are many alternatives, such as
variations of cellular automata, models of developmental biology, as well as actual
computer programs, each with its own strengths and weaknesses. For now it is pre-
mature to say which direction is best, but as representations become increasingly
more powerful in hierarchically encoding organizational units so too will computer-
automated design systems improve in their ability to produce ever more complex
and interesting designs.
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